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There are numerous results concerning the density of extremal sets (points of

maximal deviation) in univariate Chebyshev approximation. In this note, we show

that in multivariate setting this density is preserved in some weak sense.
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Let Oj; j 2 N; be finite subsets of N2 such that Oj � Ojþ1 and
S1

n¼1 On ¼
N2: Consider the corresponding spaces

P ðOnÞ :¼ pðzÞ ¼
X
k2On

akzk: ak 2 R

( )
; n 2 N;

of bivariate polynomials of variable z ¼ ðx; yÞ 2 R2:
Furthermore, with I ¼ ½	1; 1
 and any f 2 CðI2Þ set

jjf jj ¼ max
z2I2

jf ðzÞj; Eðf ;OnÞ :¼ inf
p2P ðOnÞ

jjf 	 pjj;

Bðf ;OnÞ :¼ fp 2 P ðOnÞ: jjf 	 pjj ¼ Eðf ;OnÞg;

Aðf ;pÞ ¼ fz 2 I2 : jf 	 pjðzÞ ¼ Eðf ;OnÞg; p 2 Bðf ;OnÞ:

Hence Eðf ;OnÞ is the distance from f to P ðOnÞ; Bðf ;OnÞ denotes the set of its
best approximants in P ðOnÞ; and Aðf ;pÞ consists of points of maximal
deviation from f to its best approximant p 2 Bðf ;OnÞ:
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In the univariate case by a well-known result of Kadec (see [2, pp. 4–8])
the sets of maximal deviation are dense in the underlying interval. The
following example shows that in the bivariate case these extremal sets can all
belong to a linear segment in I2: For m ¼ ðr; sÞ 2 N2 we set DðmÞ:¼ fðk; lÞ 2
N2: k4r; l4sg:

Example. Let Dðn; 1Þ � On � Dðn; nÞ; gðx; yÞ ¼ ðy þ 1Þf ðxÞ; where
f 2 CðIÞ: Denote by pn

n the best approximant of f by univariate polynomials
of degree 4n: Then *ppnðx; yÞ :¼ ðy þ 1Þpn

n ðxÞ 2 Bðg;OnÞ; ðx; yÞ 2 I2: Moreover
for any ðx; yÞ 2 Aðg; *ppnÞ we have y ¼ 1: Thus for each n 2 N; there is a
selection of best approximant from Bðg;OnÞ so that the corresponding
extremal sets belong to the segment fðx; 1Þ: x 2 Ig � I2:

By the above example the density may occur just in ‘‘one of the
coordinates.’’ Let us verify now that this ‘‘weak density’’ holds in general, in
case of bivariate approximation on a square. (We consider only the two-
dimensional case for the sake of convenience, the case of approximation on
a d-dimensional cube is similar.)

We shall require that On; n 2 N; satisfies the following mild
restrictions:

(i) if m 2 On then DðmÞ � On;
(ii) m1 =2 Dðm2Þ whenever m1;m2 2 Onþ1=On;
(iii) 1

log nminfr þ s: ðr; sÞ 2 N2=Ong ! 1; n ! 1:

(Conditions (i)–(iii) hold for instance when On :¼ fðr; sÞ: r þ s4ng:)
Furthermore for any K � R2 denote by ClðKÞ its closure, and

Kx :¼ fx 2 R: ðx; yÞ 2 Kg; Ky :¼ fy 2 R: ðx; yÞ 2 Kg:

Theorem. Let f 2 CðI2Þ and assume that On satisfies (i)–(iii), n 2 N: For

any pn 2 Bðf ;OnÞ and n0 2 N set Af :¼ Clð
S1

n¼n0
Aðf ;pnÞÞ: Then either

Ax
f ¼ I or A

y
f ¼ I :

Thus, the projection of extremal sets to at least one of the axes must be
dense. (The previous example shows that one cannot expect in general a
stronger result.)

We shall need a lemma from [3, p. 36].

Lemma. Let O � N2 be finite, and assume that r ¼ ði; jÞ 2 O is such that

r =2 DðsÞ whenever s 2 O; s=r: Then for any pðzÞ ¼
P

k2O akzk we have jarj4
2iþj	1jjpjj:

Proof of theorem. Assume that to the contrary there exist nonempty
open intervals T1; T2 � I such that x =2 T1; y =2 T2 whenever ðx; yÞ 2 Af : Since
the Chebyshev constant of the sets I =T1 and I =T2 is less than 1

2
(see, e.g., the



NOTE 129
appendix in [1]) there exist monic univariate polynomials gnðxÞ ¼ xn þ � � � ;
tnðyÞ ¼ yn þ � � � such that setting

xn :¼ max
x2I=T1

jgnðxÞj; Zn :¼ max
y2I=T2

jtnðyÞj; ð1Þ

xn; Zn42	nþ1; n 2 N

we have for some b > 1 and n1 2 N

xn; Zn4ð2bÞ	n; n5n1: ð2Þ

Set ln :¼ Eðf ;OnÞ; n 2 N: Since ln # 0 as n ! 1 by a standard argument
(see [2, p. 4]) for some infinite subsequence T � N

ln 	 lnþ1

ln þ lnþ1
5

1

n2
; n 2 T : ð3Þ

Consider now arbitrary pn 2 Bðf ;OnÞ; n 2 N: Then it is known (see
[3, p. 14]) that there exist m 2 N; zk ¼ ðxk ; ykÞ 2 I2 and ck=0 ð14k4mÞ such
that

ðf 	 pnÞðzkÞ ¼ Eðf ;OnÞ sgn ck ; 14k4m; ð4Þ

Xm
k¼1

ckpðzkÞ ¼ 0; p 2 P ðOnÞ: ð5Þ

Setting

pn

nþ1 :¼
pnþ1 	 pn

lnþ1 þ ln
2 P ðOnþ1Þ;

we clearly have jjpn
nþ1jj41: Moreover (4) and (3) yield

pn

nþ1ðzkÞ sgn ck ¼
ðf 	 pnÞðzkÞ 	 ðf 	 pnþ1ÞðzkÞ

ln þ lnþ1
sgn ck

5
ln 	 lnþ1

ln þ lnþ1
5

1

n2
; n 2 T ; 14k4m: ð6Þ

In addition, with some pnn
n 2 P ðOnÞ we have

pn

nþ1ðzÞ ¼
X

r2Onþ1=On

anr z
r þ pnn

n ðzÞ: ð7Þ
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Properties (i)–(ii) of On yield that #fOnþ1=Ong4cn with an absolute
constant c > 0; and, in addition, the lemma is applicable to every anr in (7).
Hence, whenever r ¼ ði; jÞ 2 Onþ1=On

janr j42iþj	1jjpn

nþ1jj42iþj	1: ð8Þ

Consider now the polynomial

*ppnþ1ðx; yÞ ¼ pn

nþ1ðx; yÞ 	
X

r¼ði;jÞ2Onþ1=On

anr giðxÞtjðyÞ; ð9Þ

where gi; tj are monic univariate polynomials satisfying (1) and (2). Then
properties (i)–(ii) imply that *ppnþ1 2 P ðOnÞ; i.e., by (5)

Xm
k¼1

ck *ppnþ1ðzkÞ ¼ 0: ð10Þ

Furthermore, using that x 2 I =T1; y 2 I =T2 for every z ¼ ðx; yÞ 2 Aðf ;pnÞ and
n5n0 we have by (9), (8) and (1)

j *ppnþ1 	 pn

nþ1jðzÞ4
X

ði;jÞ2Onþ1=On

2iþj	1xiZj; z 2 Aðf ;pnÞ: ð11Þ

Setting mn :¼ minfiþ j: ði; jÞ 2 N2=Ong we clearly have that iþ j5mn for
every ði; jÞ 2 Onþ1=On: Recall that by property (iii) of On; mn=logn
! 1 ðn ! 1Þ: Hence by (1) and (2) for n large enough

xiZj42	i	jþ1b	mn=2; ði; jÞ 2 Onþ1=On:

Using this estimate in (11) yields for every z 2 Aðf ;pnÞ;

j *ppnþ1 	 pn

nþ1jðzÞ4#fOnþ1=Ongb
	mn=24cnb	mn=2:

Finally, combining the last estimate with (6) we obtain for n 2 T large
enough

*ppnþ1ðzkÞ sgn ck 5pn

nþ1ðzkÞ sgn ck 	 jpn

nþ1 	 *ppnþ1jðzkÞ

5
1

n2
	 cnb	mn=2; 14k4m: ð12Þ

Since b > 1 and mn=log n ! 1 ðn ! 1Þ it follows from (12) that *ppnþ1ðzkÞ
sgn ck is positive for every 14k4m and n 2 T large enough. But this clearly
contradicts (10). The theorem is proved. ]
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