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NOTE

Density of Extremal Sets in Multivariate Chebyshev
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There are numerous results concerning the density of extremal sets (points of
maximal deviation) in univariate Chebyshev approximation. In this note, we show
that in multivariate setting this density is preserved in some weak sense.
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Let Q;, j € N, be finite subsets of N? such that Q; = Q;;; and |J*, Q, =
N2. Consider the corresponding spaces

P(Q2,) = {p(z) = Z ayz®: ay € [R}, nelN,

keQ,

of bivariate polynomials of variable z = (x, y) € R°.
Furthermore, with 7 = [—1,1] and any f € C(I?) set

I/l =max |7, E(f.&) = pinf I/ = pll,

eP(Q,)
B(f, Q) := {p e P(Qu): I/ — pll = E(f, L)},

A(f.p)={zel*: |f — pl(e) = E(f,Q.)},  peB(f. Q).

Hence E(f, 2,) is the distance from f to P(2,), B(f, 2,) denotes the set of its
best approximants in P(R2,), and A(f, p) consists of points of maximal
deviation from f to its best approximant p € B(f, 2,).
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In the univariate case by a well-known result of Kadec (see [2, pp. 4-8])
the sets of maximal deviation are dense in the underlying interval. The
following example shows that in the bivariate case these extremal sets can all
belong to a linear segment in /2. For m = (r,s) € N* we set D(m):= {(k,[) €
N2 k<r, I<s}.

ExaMPLE. Let D(n, 1) = Q, = D(n,n), ¢(x,y)=(y+1)f(x), where
f € C(I). Denote by p¥ the best approximant of f by univariate polynomials
of degree <n. Then p,(x,y) = (y+ 1) p¥(x) € B(g,Qy), (x,y) € I?. Moreover
for any (x,y) € A(g,p,) we have y =1. Thus for each neN, there is a
selection of best approximant from B(g,Q,) so that the corresponding
extremal sets belong to the segment {(x,1): xe I} < I°.

By the above example the density may occur just in “one of the
coordinates.” Let us verify now that this ““weak density’’ holds in general, in
case of bivariate approximation on a square. (We consider only the two-
dimensional case for the sake of convenience, the case of approximation on
a d-dimensional cube is similar.)

We shall require that €,, neN, satisfies the following mild
restrictions:

(1) if m € Q, then D(m) = Q,;
(i) m; ¢ D(m,) whenever my,m; € Q,.1\Q,;
(iii) aymin{r +s: (r,s) € N2\ Q,} - oo, n > .

(Conditions (i)—(iii) hold for instance when Q, = {(r,s): r + s<n}.)
Furthermore for any K = R? denote by C/(K) its closure, and

K" := {xeR: (x,y) e K}, K’ ={yeR: (x,y) eK}.

THEOREM. Let f € C(I*) and assume that Q, satisfies (i)—(iii), n € N. For
any p, € B(f,Q,) and noeN set Ay = CZ(U‘ZO:nO A(f, pn)). Then either
A =1 orA;:l.

Thus, the projection of extremal sets to at least one of the axes must be
dense. (The previous example shows that one cannot expect in general a
stronger result.)

We shall need a lemma from [3, p. 36].

LEMMA. Let Q = N? be finite, and assume that v = (i, j) € Q is such that
r ¢ D(s) whenever s € Q, s#r. Then for any p(z) =Y o axz* we have |a;|<
2511 pll-

Proof of theorem. Assume that to the contrary there exist nonempty
open intervals 7j, 7> < I such that x¢ T, y¢ T> whenever (x, y) € A,. Since
the Chebyshev constant of the sets 7\ 7} and I\ 7» is less than % (see, e.g., the



NOTE 129

appendix in [1]) there exist monic univariate polynomials g,(x) =x" +---,
t(») = " + -+ such that setting

¢y i= max |g,(x)], 1, = max [t,(y)], (1)
XE[\T] yGl\Tz
&ty <27, neN

we have for some > 1 and n; e N
oy <2P7",  nzm. 2

Set 4, := E(f,Q,), n € N. Since 4, | 0 as n - oo by a standard argument
(see [2, p. 4]) for some infinite subsequence 7 < N

)Vn B /1n+1 1
R T.
P &

Consider now arbitrary p, € B(f,Q,), n€ N. Then it is known (see
[3, p. 14]) that there exist m € N, z; = (x;, ) € I? and ¢; #0 (1 <k <m) such
that

(/' = pn)(zi) = E(f,£2,) sgn cx, 1<k<m, “4)
> ap@) =0,  pePQ,). (5)
=1
Setting
Pl = Dl — Pn ¢ P(Q2y11),

/anrl + ;Ln

we clearly have || p}, [|<1. Moreover (4) and (3) yield

o () sgn e, =L =P ")(Zﬁ — E{ +1_ @) o g,
/j;—j:/% neT, l1<k<m. (6)
In addition, with some p* € P(Q,) we have
Pia@= Y &7+ p¥@. (M

reQn+l\Qn
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Properties (i)—(ii) of Q, yield that #{Q,,;\Q,} <cn with an absolute
constant ¢ >0, and, in addition, the lemma is applicable to every & in (7).
Hence, whenever r = (i, /) € Q,.1\Q,

laf| <2 gy <2 ()

Consider now the polynomial

B ) = phaG) = Y atan0), ©
r:(i,j)eQnH\Q,,

where g;,¢; are monic univariate polynomials satisfying (1) and (2). Then
properties (i)—(ii) imply that p,,; € P(Q,), i.e., by (5)

> b () = 0. (10)
k=1

Furthermore, using that x € I\ T, y € I\ T» for every z = (x, y) € A(f, p,) and
n=ny we have by (9), (8) and (1)

Bosi — mipl@< > 2 an,  ze A, p) (11)

(1:)EQu 1\ Q0
Setting m,, ;== min{i + j: (i,)) € N?\Q,} we clearly have that i + j>m, for

every (i,/) € Q,:1\1Q,. Recall that by property (iii) of Q,, m,/logn
— o0 (n — 00). Hence by (1) and (2) for n large enough

Emy<2 BT (i) € Quit\ Q.
Using this estimate in (11) yields for every z € A(f, p,),
Brit = Prl@ <L\ Q3 B2 <cnp 2,

Finally, combining the last estimate with (6) we obtain for ne T large
enough

D1 (@) sgnex = pi () sgn ¢, — | Py — P 1(zi)
1 —m
>——onf w2, 1<k<m. (12)
Since f#>1 and m,/logn — 0o (n — 00) it follows from (12) that p,. (zx)

sgn ¢, s positive for every 1 <k<m and n € T large enough. But this clearly
contradicts (10). The theorem is proved. 1
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